University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 82

Answer

$$\int^{1/2}_{0}x^3(1+9x^4)^{-3/2}dx=\frac{1}{90}$$

Work Step by Step

$$A=\int^{1/2}_{0}x^3(1+9x^4)^{-3/2}dx$$ We set $a=1+9x^4$, which means $$da=36x^3dx$$ $$x^3dx=\frac{1}{36}da$$ For $x=0$, $a=1$ and for $x=1/2$, $a=1+\frac{9}{2^4}=1+\frac{9}{16}=\frac{25}{16}$ Therefore, $$A=\frac{1}{36}\int^{25/16}_1a^{-3/2}da$$ $$A=\Big(\frac{1}{36}\times\frac{a^{-1/2}}{-\frac{1}{2}}\Big)\Big]^{25/16}_1=-\frac{1}{18\sqrt a}\Big]^{25/16}_1$$ $$A=-\frac{1}{18}\Big(\frac{1}{\sqrt{\frac{25}{16}}}-\frac{1}{\sqrt1}\Big)$$ $$A=-\frac{1}{18}\Big(\frac{1}{\frac{5}{4}}-1\Big)=-\frac{1}{18}\Big(\frac{4}{5}-1\Big)$$ $$A=-\frac{1}{18}\Big(-\frac{1}{5}\Big)$$ $$A=\frac{1}{90}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.