University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 108

Answer

$$\int^{3}_{\sqrt3}\frac{dt}{3+t^2}dt=\frac{\pi\sqrt3}{36}$$

Work Step by Step

$$A=\int^{3}_{\sqrt3}\frac{dt}{3+t^2}dt=\int^{3}_{\sqrt3}\frac{dt}{(\sqrt3)^2+t^2}dt$$ We have $$\int\frac{dx}{a^2+x^2}=\frac{1}{a}\tan^{-1}\Big(\frac{x}{a}\Big)+C$$ Therefore, $$A=\frac{1}{\sqrt3}\tan^{-1}\Big(\frac{t}{\sqrt3}\Big)\Big]^{3}_{\sqrt3}$$ $$A=\frac{\sqrt3}{3}\Big(\tan^{-1}\sqrt3-\tan^{-1}1\Big)$$ $$A=\frac{\sqrt3}{3}\Big(\frac{\pi}{3}-\frac{\pi}{4}\Big)$$ $$A=\frac{\sqrt3}{3}\times\frac{\pi}{12}=\frac{\pi\sqrt3}{36}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.