University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 105

Answer

$$\int^{3/4}_{-3/4}\frac{6dx}{\sqrt{9-4x^2}}dx=\pi$$

Work Step by Step

$$A=\int^{3/4}_{-3/4}\frac{6dx}{\sqrt{9-4x^2}}dx=6\int^{3/4}_{-3/4}\frac{dx}{\sqrt{3^2-(2x)^2}}$$ Take $u=2x$, which means $$du=2dx$$ $$dx=\frac{1}{2}du$$ For $x=3/4$, we have $u=3/2$ For $x=-3/4$, we have $u=-3/2$ Therefore, $$A=3\int^{3/2}_{-3/2}\frac{du}{\sqrt{3^2-u^2}}$$ We have $$\int\frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\Big(\frac{x}{a}\Big)+C$$ Therefore, $$A=3\sin^{-1}\Big(\frac{u}{3}\Big)\Big]^{3/2}_{-3/2}$$ $$A=3\Big(\sin^{-1}\frac{\frac{3}{2}}{3}-\sin^{-1}\frac{-\frac{3}{2}}{3}\Big)$$ $$A=3\Big(\sin^{-1}\frac{1}{2}-\sin^{-1}\Big(-\frac{1}{2}\Big)\Big)$$ $$A=3\Big(\frac{\pi}{6}-\Big(-\frac{\pi}{6}\Big)\Big)=3\times\frac{2\pi}{6}=\pi$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.