University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 45

Answer

$$\int(2\theta+1+2\cos(2\theta+1))d\theta=\frac{(2\theta+1)^2}{4}+\sin(2\theta+1)+C$$

Work Step by Step

$$A=\int(2\theta+1+2\cos(2\theta+1))d\theta$$ We set $a=2\theta+1$, then $$da=2d\theta$$ $$d\theta=\frac{1}{2}da$$ Therefore, $$A=\frac{1}{2}\int (a+2\cos a)da$$ $$A=\frac{1}{2}\Big(\int ada+2\int\cos ada\Big)$$ $$A=\frac{1}{2}\Big(\frac{a^2}{2}+2\sin a\Big)+C$$ $$A=\frac{a^2}{4}+\sin a+C$$ $$A=\frac{(2\theta+1)^2}{4}+\sin(2\theta+1)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.