University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 104

Answer

$$\int^{e}_1\frac{8\ln3\log_3\theta}{\theta}d\theta=4$$

Work Step by Step

$$A=\int^{e}_1\frac{8\ln3\log_3\theta}{\theta}d\theta$$ We set $u=\log_3\theta$, which means $$du=\frac{1}{\theta\ln3}d\theta$$ $$\frac{1}{\theta}d\theta=\ln3du$$ For $\theta=1$, we have $u=\log_31=0$ For $\theta=e$, we have $u=\log_3e$ Therefore, $$A=\int^{log_3e}_{0}8\ln3u(\ln3du)=\int^{log_3e}_{0}8(\ln3)^2udu$$ $$A=\frac{8(\ln3)^2}{2}u^2\Big]^{log_3e}_{0}=4(\ln3)^2u^2\Big]^{log_3e}_{0}$$ $$A=4(\ln3)^2(\log_3e)^2$$ $$A=4\Big(\ln3\times\frac{1}{\ln3}\Big)^2$$ $$A=4\times1^2=4$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.