University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 110

Answer

$$\int^{8}_{4\sqrt2}\frac{24dy}{y\sqrt{y^2-16}}=\frac{\pi}{2}$$

Work Step by Step

$$A=\int^{8}_{4\sqrt2}\frac{24dy}{y\sqrt{y^2-16}}=\int^{8}_{4\sqrt2}\frac{24dy}{y\sqrt{y^2-4^2}}$$ We have $$\int\frac{dx}{x\sqrt{x^2-a^2}}=\frac{1}{a}\sec^{-1}\Big|\Big(\frac{x}{a}\Big)\Big|+C$$ Therefore, $$A=24\times\frac{1}{4}\sec^{-1}\Big|\frac{y}{4}\Big|\Big]^{8}_{4\sqrt2}$$ $$A=6\Big(\sec^{-1}\Big|\frac{8}{4}\Big|-\sec^{-1}\Big|\frac{4\sqrt2}{4}\Big|\Big)$$ $$A=6(\sec^{-1}2-\sec^{-1}\sqrt2)$$ $$A=6\Big(\frac{\pi}{3}-\frac{\pi}{4}\Big)$$ $$A=6\times\frac{\pi}{12}=\frac{\pi}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.