University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 106

Answer

$$\int^{1/5}_{-1/5}\frac{6dx}{\sqrt{4-25x^2}}dx=\frac{2\pi}{5}$$

Work Step by Step

$$A=\int^{1/5}_{-1/5}\frac{6dx}{\sqrt{4-25x^2}}dx=6\int^{1/5}_{-1/5}\frac{dx}{\sqrt{2^2-(5x)^2}}$$ Take $u=5x$, which means $$du=5dx$$ $$dx=\frac{1}{5}du$$ For $x=1/5$, we have $u=1$ For $x=-1/5$, we have $u=-1$ Therefore, $$A=\frac{6}{5}\int^{1}_{-1}\frac{du}{\sqrt{2^2-u^2}}$$ We have $$\int\frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\Big(\frac{x}{a}\Big)+C$$ Therefore, $$A=\frac{6}{5}\sin^{-1}\Big(\frac{u}{2}\Big)\Big]^{1}_{-1}$$ $$A=\frac{6}{5}\Big(\sin^{-1}\frac{1}{2}-\sin^{-1}\Big(-\frac{1}{2}\Big)\Big)$$ $$A=\frac{6}{5}\Big(\frac{\pi}{6}-\Big(-\frac{\pi}{6}\Big)\Big)=\frac{6}{5}\times\frac{2\pi}{6}=\frac{2\pi}{5}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.