Answer
$$\int 2^{\tan x}\sec^2xdx=\frac{2^{\tan x}}{\ln2}+C$$
Work Step by Step
$$A=\int 2^{\tan x}\sec^2xdx$$
We set $a=\tan x$, which means $$da=\sec^2xdx$$
Therefore, $$A=\int 2^ada$$ $$A=\frac{2^a}{\ln2}+C$$ $$A=\frac{2^{\tan x}}{\ln2}+C$$