University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Practice Exercises - Page 343: 103

Answer

$$\int^{8}_1\frac{\log_4\theta}{\theta}d\theta=\frac{9\ln2}{4}$$

Work Step by Step

$$A=\int^{8}_1\frac{\log_4\theta}{\theta}d\theta$$ We set $u=\log_4\theta$, which means $$du=\frac{1}{\theta\ln4}d\theta$$ $$\frac{1}{\theta}d\theta=\ln4du$$ For $\theta=1$, we have $u=\log_41=0$ For $\theta=8$, we have $$u=\log_48=\log_{2^2}2^3=\frac{3}{2}\log_22=\frac{3}{2}$$ Therefore, $$A=\ln4\int^{3/2}_{0}udu$$ $$A=\frac{\ln4}{2}u^2\Big]^{3/2}_{0}$$ $$A=\frac{\ln4}{2}\Big(\frac{3}{2}\Big)^2=\frac{\ln4}{2}\times\frac{9}{4}$$ $$A=\frac{9\ln4}{8}$$ $$A=\frac{9\ln2}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.