University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 7

Answer

Tangent line: $\quad y=2x-\sqrt{3}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/6}=-3\sqrt{3}$

Work Step by Step

The slope of the tangent line at $t=\displaystyle \frac{\pi}{6}$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\pi/6}$ $\left\{\begin{array}{l} \frac{dx}{dt}=\sec t\tan t\\ \\ \frac{dy}{dt}=\sec^{2}t \end{array}\right.\quad, $ $\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\sec^{2}t}{\sec t\tan t}=\frac{\mathrm{l}}{\cos t\tan t}=\frac{1}{\sin t}=\csc t$ $\left. \displaystyle \frac{dy}{dx} \right|_{t=\pi/6}=\csc\frac{\pi}{6}=2$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/6}$, $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{\frac{d}{dt}[\csc t]}{\sec t\tan t}=\frac{-\csc t\cot t}{\sec t\tan t}=-\cot^{3}t$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\pi/6}=-(\sqrt{3})^{3}=-3\sqrt{3}$ The point $P$ on the curve corresponding to $t=\displaystyle \frac{\pi}{6}$ is $\displaystyle \left\{\begin{array}{l} x=\sec(\frac{\pi}{6})=\frac{2}{\sqrt{3}}\\ \\ y=\tan(\frac{\pi}{6})=\frac{1}{\sqrt{3}} \end{array}\right.\quad, P(\frac{2\sqrt{3}}{3},\frac{\sqrt{3}}{3})$ Use the point-slope equation for the tangent line. $y-\displaystyle \frac{\sqrt{3}}{3}=2(x-\frac{2\sqrt{3}}{3})$ $y=2x-\displaystyle \frac{4\sqrt{3}}{3}+\frac{\sqrt{3}}{3}$ $y=2x-\sqrt{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.