University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 10

Answer

Tangent line: $\quad y=-x-1$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=1}=1$

Work Step by Step

The slope of the tangent line at $t=1$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=1}$ $\displaystyle \left\{\begin{array}{l} \frac{dx}{dt}=-t^{-2},\\ \\ \frac{dy}{dt}=t^{-1} \end{array}\right.\quad, \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{t^{-1}}{-t^{-2}}=-t$ $\left. \displaystyle \frac{dy}{dx} \right|_{t=1}=-1$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=-1}$, $\displaystyle \frac{dy'}{dt}=\frac{d}{dt}[-t]=-1$ $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{-1}{-t^{-2}}=t^{2}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=1}=1$ The point $P$ on the curve corresponding to $t=1$ is $\left\{\begin{array}{l} x=1\\ y=-2 \end{array}\right.\quad, P(1,-2)$ Use the point-slope equation for the tangent line. $y+2=-1\cdot(x-1)$ $y=-x+1-2$ $y=-x-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.