University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 5

Answer

Tangent line: $\quad y=x+\displaystyle \frac{1}{4}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{1}{4}}=-2$

Work Step by Step

The slope of the tangent line at $t=\displaystyle \frac{1}{4}$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\frac{1}{4}}$ $\displaystyle \left\{\begin{array}{l} \frac{dx}{dt}=1,\\ \\ \frac{dy}{dt}=\frac{1}{2\sqrt{t}} \end{array}\right.\quad, \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\frac{1}{2\sqrt{t}}}{1}=\frac{1}{2\sqrt{t}}$ $\left. \displaystyle \frac{dy}{dx} \right|_{t=\frac{1}{4}}=\frac{1}{2\sqrt{1/4}}=1$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{1}{4}}$, $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{\frac{d}{dt}[\frac{1}{2}t^{-1/2}]}{1}=-\frac{1}{4}t^{-3/2}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{1}{4}}=-\frac{1}{4}(\frac{1}{4})^{-3/2}=-\frac{1}{4}\cdot 2^{3}=-2$ The point $P$ on the curve corresponding to $t=\displaystyle \frac{1}{4}$ is $\displaystyle \left\{\begin{array}{l} x=\frac{1}{4}\\ \\ y=\frac{1}{2} \end{array}\right.\quad, P(\frac{1}{4},\frac{1}{2})$ Use the point-slope equation for the tangent line. $y-\displaystyle \frac{1}{2}=1\cdot(x-\frac{1}{4})$ $y=x-\displaystyle \frac{1}{4} +\frac{1}{2}$ $y=x+\displaystyle \frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.