Answer
$4$
Work Step by Step
Since, $dS=\sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$
Thus,
$S=\int_{0}^{\pi} \sqrt{(-\sin t)^2+(1+\cos t)^2} dt=\int_{0}^{\pi} \sqrt{2+2 \cos t} dt$
or, $\int_{0}^{\pi} \sqrt{2+2 (2\cos^2 (t/2)-1)} dt=\int_{0}^{\pi} 2\cos (t/2) dt$
Thus, $S=[4 \sin (t/2)]_{0}^{\pi} =4$