University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 4

Answer

Tangent line: $\quad y=\sqrt{3}x$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{2\pi}{3}}=0$

Work Step by Step

The slope of the tangent line at $t=\displaystyle \frac{2\pi}{3}$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\frac{2\pi}{3}}$ $\displaystyle \left\{\begin{array}{l} \frac{dx}{dt}=-\sin t,\\ \\ \frac{dy}{dt}=-\sqrt{3}\sin t \end{array}\right.\quad\Rightarrow \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{-\sqrt{3}\sin t}{-\sin t}=\sqrt{3}$ $\left. \displaystyle \frac{dy}{dx} \right|_{t=\frac{2\pi}{3}}=\sqrt{3}$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{2\pi}{3}}$, $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{\frac{d}{dt}[\sqrt{3}]}{-\sin t}=0$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{2\pi}{3}}=0$ The point $P$ on the curve corresponding to $t=\displaystyle \frac{2\pi}{3}$ is $\displaystyle \left\{\begin{array}{l} x=\cos\frac{2\pi}{3}=-\frac{1}{2}\\ \\ y=\sqrt{3}\cos\frac{2\pi}{3}=-\frac{\sqrt{3}}{2} \end{array}\right.\quad, P(-\frac{1}{2},-\frac{\sqrt{3}}{2})$ Use the point-slope equation for the tangent line. $y-(-\displaystyle \frac{\sqrt{3}}{2})=\sqrt{3}(x-(-\frac{1}{2}))$ $y=\displaystyle \sqrt{3}x+\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{2}$ $y=\sqrt{3}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.