University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 33

Answer

$\dfrac{52 \pi}{3}$

Work Step by Step

Since, $dS=\sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$ Thus, $dS=\sqrt{(1)^2+(t+\sqrt 2)^2}=\sqrt{t^2+2\sqrt 2t+3}$ or, $S=\int_{-\sqrt 2}^{\sqrt 2} (2 \pi) x ds=\int_{-\sqrt 2}^{\sqrt 2} (2 \pi) (t+\sqrt 2) (\sqrt{t^2+2\sqrt 2t+3}) dt$ Suppose $p=\sqrt{t^2+2\sqrt 2t+3} \implies dp=(2t+2\sqrt 2) dt$ $S=( \pi)\int_{1}^{9} \sqrt{p} dp=[\dfrac{2\pi u^{3/2}}{3}]_{1}^{9}$ Thus, $S=\dfrac{52 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.