University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 3

Answer

Tangent line: $\quad y=-\displaystyle \frac{1}{2}x+2\sqrt{2}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{\pi}{4}}=-\frac{\sqrt{2}}{4}$

Work Step by Step

$\displaystyle \left\{\begin{array}{l} \frac{dx}{dt}=4\cos t,\\ \\ \frac{dy}{dt}=-2\sin t \end{array}\right.\quad, \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{-2\sin t}{4\cos t}=-\frac{1}{2}\tan t$ The slope of the tangent line at $t=\displaystyle \frac{\pi}{4}$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\frac{\pi}{4}}= \left. -\displaystyle \frac{1}{2}\tan t \right|_{t=\frac{\pi}{4}}=-\frac{1}{2}\tan\frac{\pi}{4}=-\dfrac{1}{2}$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{\pi}{4}}$, $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{\frac{d}{dt}[-\frac{1}{2}\tan t]}{4\cos t}$ $=\displaystyle \frac{\frac{1}{2}\sec^{2}t}{4\cos t}=-\frac{1}{8\cos^{3}t}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=\frac{\pi}{4}}=-\frac{1}{8\cos^{3}\frac{\pi}{4}}=-\frac{1}{8(\frac{1}{\sqrt{2}})^{3}}=-\frac{2\sqrt{2}}{8}=-\frac{\sqrt{2}}{4}$ The point $P$ on the curve corresponding to $t=\displaystyle \frac{\pi}{4}$ is $\left\{\begin{array}{l} x=4\sin\frac{\pi}{4}=2\sqrt{2}\\ \\ y=2\cos\frac{x}{4}=\sqrt{2} \end{array}\right.\quad, P(2\sqrt{2},\sqrt{2})$ Use the point-slope equation for the tangent line. $y-\displaystyle \sqrt{2}=-\frac{1}{2}(x-2\sqrt{2})$ $y=-\displaystyle \frac{1}{2}x+\sqrt{2} +\sqrt{2}$ $y=-\displaystyle \frac{1}{2}x+2\sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.