Answer
$7$
Work Step by Step
Since, $dS=\sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2} dt$
Thus,
$S=\int_{0}^{\sqrt 3} \sqrt{(3t^2)^2+(3t)^2} dt=\int_{0}^{\sqrt 3} \sqrt{9t^4+9t^2} dt$
or, $(3t) \int_{0}^{\sqrt 3} \sqrt{t^2+1} dt=(\dfrac{3}{2}) \int_{0}^{\sqrt 3} \sqrt{t^2+1} (2t) dt$
Plug $t^2+1 =p \implies dp=2tdt$
Thus, $S=(\dfrac{3}{2}) \int_{1}^{4} p^{1/2} dp$
or, $S=[u^{3/2}]_{1}^{4} =7$