University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - Exercises - Page 572: 14

Answer

Tangent line: $\quad y=-\displaystyle \frac{1}{2}x+\frac{1}{2}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=0}=-\frac{1}{8}$

Work Step by Step

$\displaystyle \frac{dx}{dt}=1+e^{t},\qquad \displaystyle \frac{dy}{dt}=-e^{t}$ $\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{-e^{t}}{1+e^{t}}$ The slope of the tangent line at $t=0$ is $\left. \displaystyle \frac{dy}{dx} \right|_{t=\pi/2}=\frac{-1}{1+1}=-\frac{1}{2}$ With $y'=\displaystyle \frac{dy}{dx}$, we find $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=0}$, $\displaystyle \frac{dy'}{dt}=\frac{d}{dt}[\frac{-e^{t}}{1+e^{t}}]=-\frac{e^{t}(1+e^{t})-e^{t}(1+e^{t})}{(1+e^{t})^{2}}$ $=-\displaystyle \frac{e^{t}(1+e^{t})-e^{t}(e^{t})}{(1+e^{t})^{2}}$ $=-\displaystyle \frac{e^{t}(1+e^{t}-e^{t})}{(1+e^{t})^{2}}$ $=-\displaystyle \frac{e^{t}}{(1+e^{t})^{2}}$ $\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{dy'/dt}{dx/dt}=\frac{-\frac{e^{t}}{(1+e^{t})^{2}}}{1+e^{t}}=-\frac{e^{t}}{(1+e^{t})^{3}}$ The point $P$ on the curve corresponding to $t=0$ is $P(1+1,\ 1-1)=(1,0)$ Use the point-slope equation for the tangent line. $y-0=-\displaystyle \frac{1}{2}\cdot(x-1)$ $y=-\displaystyle \frac{1}{2}x+\frac{1}{2}$ $\displaystyle \left.\frac{d^{2}y}{dx^{2}}\right|_{t=0}=-\frac{1}{(1+1)^{3}}=-\frac{1}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.