Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 67

Answer

$$\frac{{{x^2}}}{4} - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C$$

Work Step by Step

$$\eqalign{ & \int {x{{\sin }^2}x} dx \cr & {\text{Use the half - angle formula }}{\sin ^2}x = \frac{{1 - \cos 2x}}{2} \cr & = \int {x\left( {\frac{{1 - \cos 2x}}{2}} \right)} dx \cr & {\text{Distribute }} \cr & = \int {\left( {\frac{x}{2} - \frac{{x\cos 2x}}{2}} \right)} dx \cr & = \frac{1}{2}\int x dx - \frac{1}{2}\int {x\cos 2x} dx \cr & = \frac{{{x^2}}}{4} - \frac{1}{2}\int {x\cos 2x} dx \cr & \cr & {\text{Calculate }}\int {x\cos 2x} dx \cr & {\text{ by using integration by parts}} \cr & \,\,\,\,u = x,\,\,\,du = dx \cr & \,\,\,dv = \cos 2x,\,\,v = \frac{1}{2}\sin 2x \cr & \,\,\int {x\cos 2x} dx = \frac{1}{2}x\sin 2x - \int {\left( {\frac{1}{2}\sin 2x} \right)dx} \cr & \,\,\int {x\cos 2x} dx = \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C \cr & {\text{Then}}{\text{,}} \cr & \frac{{{x^2}}}{4} - \frac{1}{2}\int {x\cos 2x} dx = \frac{{{x^2}}}{4} - \frac{1}{2}\left( {\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x} \right) + C \cr & = \frac{{{x^2}}}{4} - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.