Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 62

Answer

$$-\frac{1}{8} \cos 2 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{24} \cos 6 \theta+C $$

Work Step by Step

We make use of $$\sin m x \cos n x=\frac{1}{2}[\sin (m-n) x+\sin (m+n) x]$$ Then \begin{align*} \int \sin \theta \sin 2 \theta \sin 3 \theta d \theta&=\int \frac{1}{2}(\cos (1-2) \theta-\cos (1+2) \theta) \sin 3 \theta d \theta\\ &=\frac{1}{2} \int(\cos (-\theta)-\cos 3 \theta) \sin 3 \theta d \theta\\ &=\frac{1}{2} \int \sin 3 \theta \cos \theta d \theta-\frac{1}{2} \int \sin 3 \theta \cos 3 \theta d \theta\\ &=\frac{1}{2} \int \frac{1}{2}(\sin (3-1) \theta+\sin (3+1) \theta) d \theta-\frac{1}{4} \int 2 \sin 3 \theta \cos 3 \theta d \theta\\ &=\frac{1}{4} \int(\sin 2 \theta+\sin 4 \theta) d \theta-\frac{1}{4} \int \sin 6 \theta d \theta\\ &=-\frac{1}{8} \cos 2 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{24} \cos 6 \theta+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.