Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 58

Answer

$$-\frac{4}{5} \cos ^{5} \theta+\frac{4}{3} \cos ^{3} \theta-\cos \theta+C $$

Work Step by Step

We integrate as follows: \begin{align*} \int \cos ^{2} 2 \theta \sin \theta d \theta & =\int\left(2 \cos ^{2} \theta-1\right)^{2} \sin \theta d \theta\\ &=\int\left(4 \cos ^{4} \theta-4 \cos ^{2} \theta+1\right) \sin \theta d \theta\\ &=\int 4 \cos ^{4} \theta \sin \theta d \theta-\int 4 \cos ^{2} \theta \sin \theta d \theta+\int \sin \theta d \theta\\ &=-\frac{4}{5} \cos ^{5} \theta+\frac{4}{3} \cos ^{3} \theta-\cos \theta+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.