Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 53

Answer

$$\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - \pi }^\pi {\sin 3x} \sin 3xdx \cr & {\text{Use the identity }}\sin mx\sin xnx = \frac{1}{2}\left[ {\cos \left( {m - n} \right)x - \cos \left( {m + n} \right)x} \right]\,\,\left( {{\text{see page 463}}} \right) \cr & \int_{ - \pi }^\pi {\sin 3x} \sin 3xdx = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\cos \left( {3 - 3} \right)x - \cos \left( {3 + 3} \right)x} \right]dx} \cr & = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {1 - \cos 6x} \right]dx} \cr & = \frac{1}{2}\int_{ - \pi }^\pi {\left( {1 - \cos 6x} \right)dx} \cr & {\text{integrating}} \cr & = \frac{1}{2}\left( {x - \frac{1}{6}\sin 6x} \right)_{ - \pi }^\pi \cr & = \frac{1}{2}\left( {\pi - \frac{1}{6}\sin 6\pi } \right) - \frac{1}{2}\left( { - \pi - \frac{1}{6}\sin 6\left( { - \pi } \right)} \right) \cr & {\text{simplifying}} \cr & = \frac{1}{2}\left( {\pi - 0} \right) - \frac{1}{2}\left( { - \pi - 0} \right) \cr & = \frac{1}{2}\pi + \frac{1}{2}\pi \cr & = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.