Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 64

Answer

$$\frac{1}{3} \sec ^{3} x-\sec x+C $$

Work Step by Step

We integrate as follows: \begin{align*} \int \frac{\sin ^{3} x}{\cos ^{4} x} d x&=\int \frac{\sin ^{2} x \sin x}{\cos ^{4} x} d x\\ &=\int \frac{\left(1-\cos ^{2} x\right) \sin x}{\cos ^{4} x} d x\\ &=\int \frac{\sin x}{\cos ^{4} x} d x-\int \frac{\cos ^{2} x \sin x}{\cos ^{4} x} d x\\ &=\int \sec ^{3} x\tan x d x -\int \sec x \tan x d x\\ &=\int \sec ^{2} x \sec x \tan x d x-\int \sec x \tan x d x\\ &=\frac{1}{3} \sec ^{3} x-\sec x+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.