Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 54

Answer

$\frac{1}{2}$

Work Step by Step

Recall the identity $2\sin x\cos x=\sin2x$ Therefore, we get $\int \sin x \cos xdx= \frac{1}{2}\int \sin 2xdx$ $=\frac{1}{2}\times\frac{-\cos 2x}{2}+C= -\frac{1}{4}\cos 2x+C$ $\int^{\pi/2}_{0}\sin x\cos xdx= [-\frac{1}{4}\cos 2x]^{\pi/2}_{0}$ $= -\frac{1}{4}\cos\pi-(-\frac{1}{4}\cos 0)$$=(-\frac{1}{4}\times-1)-(-\frac{1}{4}\times1)$ $= \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.