Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 463: 55

Answer

$$\frac{1}{2}\sin x + \frac{1}{{14}}\sin 7x + C $$

Work Step by Step

$$\eqalign{ & \int {\cos 3x} \cos 4xdx \cr & {\text{Use the identity }}\cos mx\cos xnx = \frac{1}{2}\left[ {\cos \left( {m - n} \right)x + \cos \left( {m + n} \right)x} \right]\,\,\left( {{\text{see page 463}}} \right) \cr & \int {\cos 3x} \cos 4xdx = \int {\frac{1}{2}} \left[ {\cos \left( {3 - 4} \right)x + \cos \left( {3 + 4} \right)x} \right]dx \cr & = \frac{1}{2}\int {\left( {\cos x + \cos 7x} \right)} dx \cr & {\text{distribute}} \cr & = \frac{1}{2}\int {\cos x} dx + \frac{1}{2}\int {\cos 7x} dx \cr & {\text{integrating}} \cr & = \frac{1}{2}\sin x + \frac{1}{2}\left( {\frac{1}{7}\sin 7x} \right) + C \cr & = \frac{1}{2}\sin x + \frac{1}{{14}}\sin 7x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.