Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 126

Answer

$ a.\quad \approx 1.91063323625$ $ b.\quad\approx 0.628874925495$ $ c.\quad\approx 2.67794504459$

Work Step by Step

$ a.\quad$ The online calculator at desmos returns $1.91063323625$ when we type $arcsec(-3)$ If your calculator can't do this, enter $\displaystyle \cos^{-1}(-\frac{1}{3})$ The reason for this is that $y=\sec^{-1}x$ is the number in $[0, \pi/2$) $\cup(\pi/2, \pi$] for which $\sec y=x.$ This means that$\displaystyle \quad \frac{1}{\cos y}=x$, Or,$\displaystyle \quad \cos y=\frac{1}{x}$ So,$\displaystyle \quad y=\cos^{-1}(\frac{1}{x})$ $ b.\quad$ The online calculator at desmos returns $0.628874925495$ when we type $arccsc(1.7)$ If your calculator can't do this, enter $\displaystyle \sin^{-1}(\frac{1}{1.7})$ The reason for this is that $y=\csc^{-1}x$ is the number in $[-\pi/2,0) \cup(0, \pi/2]$ for which $\csc y=x.$ This means that$\displaystyle \quad \frac{1}{\sin y}=x$, Or,$\displaystyle \quad \sin y=\frac{1}{x}$ So,$\displaystyle \quad y=\sin^{-1}(\frac{1}{x})$ $ c.\quad$ The online calculator at desmos returns $2.67794504459$ when we type $arccot(-2)$ If your calculator can't do this, enter $\displaystyle \tan^{-1}(-\frac{1}{2})$ The result is negative, $-0.463647609001$ so we add $\pi$ to force the result into the interval $(0, \pi).$ The reason for this is that $y=\cot^{-1}x$ is the number in $(0, \pi)$ for which $\cot y=x.$ This means that$\displaystyle \quad \frac{1}{\tan y}=x$, Or,$\displaystyle \quad \tan y=\frac{1}{x}$ So,$\displaystyle \quad y=\tan(\frac{1}{x})$ (it has to belong to the interval $(0,\pi)$ so we add $\pi$ if negative)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.