Answer
$\frac{\pi^{2}}{2}$
Work Step by Step
$V$ = $\int_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$$\pi(\frac{1}{\sqrt{1+x^{2}}})^{2}$ $dx$
$V$ = $\int_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$$\frac{\pi}{{1+x^{2}}}$ $dx$
$V$ = $\pi[tan^{-1}(x)]$ $|_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$
$V$ = $\pi[tan^{-1}(\sqrt 3))-tan^{-1}(\frac{-\sqrt 3}{3})]$
$V$ = $\pi(\frac{\pi}{3}-(\frac{-\pi}{6}))$
$V$ = $\pi(\frac{\pi}{3}+\frac{\pi}{6})$
$V$ = $\frac{\pi^{2}}{2}$