Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 121

Answer

$\frac{\pi^{2}}{2}$

Work Step by Step

$V$ = $\int_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$$\pi(\frac{1}{\sqrt{1+x^{2}}})^{2}$ $dx$ $V$ = $\int_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$$\frac{\pi}{{1+x^{2}}}$ $dx$ $V$ = $\pi[tan^{-1}(x)]$ $|_{{\,\frac{-\sqrt 3}{3}}}^{{\,\sqrt 3}}$ $V$ = $\pi[tan^{-1}(\sqrt 3))-tan^{-1}(\frac{-\sqrt 3}{3})]$ $V$ = $\pi(\frac{\pi}{3}-(\frac{-\pi}{6}))$ $V$ = $\pi(\frac{\pi}{3}+\frac{\pi}{6})$ $V$ = $\frac{\pi^{2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.