Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 123

Answer

$a)$ $\frac{\pi^{2}}{2}$ $b)$ $2\pi$

Work Step by Step

$a)$ $A(x)$ = $\frac{\pi}{4}(diameter)^{2}$ $A(x)$ = $\frac{\pi}{4}(\frac{1}{\sqrt{1+x^{2}}}-(\frac{-1}{\sqrt{1+x^{2}}}))^{2}$ $A(x)$ = $\frac{\pi}{4}(\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}})^{2}$ $A(x)$ = $\frac{\pi}{1+x^{2}}$ $V$ = $\int_{{\,-1}}^{{\,1}}$$\frac{\pi}{1+x^{2}}$$dx$ $V$ = $\pi[tan^{-1}(x)]$ $|_{{\,-1}}^{{\,1}}$ $V$ = $\pi[tan^{-1}(1)-tan^{-1}(-1)]$ $V$ = $\pi(\frac{\pi}{4}-(-\frac{\pi}{4}))$ $V$ = $\pi(\frac{\pi}{4}+\frac{\pi}{4})$ $V$ = $\frac{\pi^{2}}{2}$ $b)$ $A(x)$ = $(edge)^{2}$ $A(x)$ = $(\frac{1}{\sqrt{1+x^{2}}}-(\frac{-1}{\sqrt{1+x^{2}}}))^{2}$ $A(x)$ = $(\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}})^{2}$ $A(x)$ = $\frac{4}{1+x^{2}}$ $V$ = $\int_{{\,-1}}^{{\,1}}$$\frac{4}{1+x^{2}}$$dx$ $V$ = $4[tan^{-1}(x)]$ $|_{{\,-1}}^{{\,1}}$ $V$ = $4[tan^{-1}(1)-tan^{-1}(-1)]$ $V$ = $4(\frac{\pi}{4}-(-\frac{\pi}{4}))$ $V$ = $4(\frac{\pi}{4}+\frac{\pi}{4})$ $V$ = $2\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.