Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 115

Answer

$\displaystyle \frac{d}{dx}[\csc^{-1}u]=-\frac{1}{|u|\sqrt{u^{2}-1}}\cdot\frac{du}{dx},\quad |u|\gt 1$

Work Step by Step

$\displaystyle \csc^{-1}u=\frac{\pi}{2}-\sec^{-1}u\qquad $... differentiate $\displaystyle \frac{d}{dx}[\csc^{-1}u]=\frac{d}{dx}[\frac{\pi}{2}]-\frac{d}{du}[\sec^{-1}u]\cdot\frac{du}{dx}\quad $ we have derived $\displaystyle \frac{d}{du}[\sec^{-1}u]$ in the text, before example 5. $\displaystyle \frac{d}{dx}[\csc^{-1}u]=0-\frac{1}{|u|\sqrt{u^{2}-1}}\cdot\frac{du}{dx},\quad |u|\gt 1$ $\displaystyle \frac{d}{dx}[\csc^{-1}u]=-\frac{1}{|u|\sqrt{u^{2}-1}}\cdot\frac{du}{dx},\quad |u|\gt 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.