Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 116

Answer

$\displaystyle \frac{d}{dx}[\tan^{-1}x]=\frac{1}{1+x^{2}}$

Work Step by Step

$y=\tan^{-1}x$ $x=\tan y\qquad $.... differentiate, $\displaystyle \frac{d}{dx}[x]=(\sec^{2}y)\frac{dy}{dx}$ $1=[\displaystyle \sec(\tan^{-1}x)]^{2}\cdot\frac{dy}{dx}$ $\displaystyle \frac{dy}{dx}=\frac{1}{[\sec(\tan^{-1}x)]^{2}}$ To simplify $\sec(\tan^{-1}x)$, sketch a right triangle with legs 1 and x. The hypotenuse is $\sqrt{1+x^{2}}$ The angle opposite x is $y=\tan^{-1}x$ (the adjacent leg to y is 1) $\displaystyle \sec y=\frac{\sqrt{1+x^{2}}}{1}$, $\sec(\tan^{-1}x)=\sqrt{1+x^{2}}$ So, $\displaystyle \frac{dy}{dx}=\frac{d}{dx}[\tan^{-1}x]=\frac{1}{\left[\sqrt{1+x^{2}}\right]^{2}}=\frac{1}{1+x^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.