Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 120

Answer

For $x\gt0,\quad f(x)=g(x)$

Work Step by Step

$\displaystyle \frac{d}{dx}[f(x)]=\frac{d}{dx}[\sin^{-1}u],\quad u=(x^{2}+1)^{-1/2}$ $=\displaystyle \frac{1}{\sqrt{1-u^{2}}}\cdot\frac{du}{dx}$ $=\displaystyle \frac{1}{\sqrt{1-[(x^{2}+1)^{-1/2}]^{2}}}\cdot(-\frac{1}{2}(x^{2}+1)^{-3/2}\cdot 2x)$ $= - \displaystyle \frac{x}{\sqrt{(x^{2}+1)^{3}(1-\frac{1}{x^{2}+1})}}$ $= - \displaystyle \frac{x}{(x^{2}+1)\sqrt{x^{2}+1-1}}$ $= - \displaystyle \frac{x}{(x^{2}+1)\sqrt{x^{2}}}$ $= - \displaystyle \frac{x}{(x^{2}+1)|x|}$ For $x\displaystyle \gt0,\quad \frac{d}{dx}[f(x)]=-\frac{1}{x^{2}+1}$ $\displaystyle \frac{d}{dx}[f(x)]=\frac{d}{dx}[\tan^{-1}u],\quad u=x^{-1}$ $=\displaystyle \frac{1}{1+u^{2}}\cdot\frac{du}{dx}$ $=\displaystyle \frac{1}{1+x^{-2}}\cdot(-x^{-2})$ $=-\displaystyle \frac{1}{x^{2}(1+x^{-2})}$ $=-\displaystyle \frac{1}{x^{2}+1}$ So, for $x\displaystyle \gt0,\quad \frac{d}{dx}[f(x)]= \frac{d}{dx}[g(x)]$ This means that $f(x)=g(x)+C$ To find C, set x=1 $\sin^{-1}$($\displaystyle \frac{1}{\sqrt{1+1^{2}}})=\tan(\frac{1}{1})+C$ $\displaystyle \sin^{-1}(\frac{1}{\sqrt{2}})=\tan^{-1}1+C$ $\displaystyle \frac{\pi}{4}=\frac{\pi}{4}+C$ $C=0$ So, for $x\gt0,\quad f(x)=g(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.