Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 118

Answer

$\displaystyle \frac{d}{dx}[\cot^{-1}u]=-\frac{1}{1+u^{2}}\cdot\frac{du}{dx}$

Work Step by Step

$\displaystyle \cot^{-1}u=\frac{\pi}{2}-\tan^{-1}u\qquad$ We take the derivative of both sides: $\displaystyle \frac{d}{dx}[\cot^{-1}u]= 0- [\displaystyle \frac{1}{1+u^{2}}]\frac{du}{dx}$ $\displaystyle \frac{d}{dx}[\cot^{-1}u]=-\frac{1}{1+u^{2}}\cdot\frac{du}{dx}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.