Answer
$\displaystyle \frac{d}{dx}[\cot^{-1}u]=-\frac{1}{1+u^{2}}\cdot\frac{du}{dx}$
Work Step by Step
$\displaystyle \cot^{-1}u=\frac{\pi}{2}-\tan^{-1}u\qquad$
We take the derivative of both sides:
$\displaystyle \frac{d}{dx}[\cot^{-1}u]= 0- [\displaystyle \frac{1}{1+u^{2}}]\frac{du}{dx}$
$\displaystyle \frac{d}{dx}[\cot^{-1}u]=-\frac{1}{1+u^{2}}\cdot\frac{du}{dx}$