Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 125

Answer

$ a.\quad \approx 0.841068670568$ $b.\quad\approx-0.729727656227$ $c.\quad\approx 0.463647609001$

Work Step by Step

$ a.\quad$ The online calculator at desmos returns $0.841068670568$ when we type $arcsec(1.5)$ If your calculator can't do this, enter $\displaystyle \cos^{-1}(\frac{1}{1.5})$ The reason for this is that $y=\sec^{-1}x$ is the number in $[0, \pi/2$) $\cup(\pi/2, \pi$] for which $\sec y=x.$ This means that$\displaystyle \quad \frac{1}{\cos y}=x$, Or,$\displaystyle \quad \cos y=\frac{1}{x}$ So,$\displaystyle \quad y=\cos^{-1}(\frac{1}{x})$ $ b.\quad$ The online calculator at desmos returns $-0.729727656227$ when we type $arccsc(-1.5)$ If your calculator can't do this, enter $\displaystyle \sin^{-1}(-\frac{1}{1.5})$ The reason for this is that $y=\csc^{-1}x$ is the number in $[-\pi/2,0) \cup(0, \pi/2]$ for which $\csc y=x.$ This means that$\displaystyle \quad \frac{1}{\sin y}=x$, Or,$\displaystyle \quad \sin y=\frac{1}{x}$ So,$\displaystyle \quad y=\sin^{-1}(\frac{1}{x})$ $ c.\quad$ The online calculator at desmos returns $0.463647609001$ when we type $arccot(2)$ If your calculator can't do this, enter $\displaystyle \tan^{-1}(-\frac{1}{1.5})$ The reason for this is that $y=\cot^{-1}x$ is the number in $(0, \pi)$ for which $\cot y=x.$ This means that$\displaystyle \quad \frac{1}{\tan y}=x$, Or,$\displaystyle \quad \tan y=\frac{1}{x}$ So,$\displaystyle \quad y=\tan(\frac{1}{x})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.