Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 122

Answer

$2\pi{r}$

Work Step by Step

$y$ = $\sqrt {r^{2}-x^{2}}$ $\frac{dy}{dx}$ = $\frac{-2x}{2\sqrt{r^{2}-x^{2}}}$ $\frac{dy}{dx}$ = $\frac{-x}{\sqrt{r^{2}-x^{2}}}$ $L$ = $\int_{{\,o}}^{{\,\frac{r}{\sqrt 2}}}$$\sqrt {1+(\frac{-x}{\sqrt{r^{2}-x^{2}}})^{2}}$ $dx$ $L$ = $\int_{{\,o}}^{{\,\frac{r}{\sqrt 2}}}$$\sqrt {(\frac{{r^{2}-x^{2}+x^{2}}}{{r^{2}-x^{2}}})}$ $dx$ $L$ = $\int_{{\,o}}^{{\,\frac{r}{\sqrt 2}}}$$\sqrt {(\frac{{r^{2}}}{{r^{2}-x^{2}}})}$ $dx$ $L$ = $\int_{{\,o}}^{{\,\frac{r}{\sqrt 2}}}$$r\frac{1}{\sqrt {1-(\frac{x}{r})^{2}} }$ $dx$ $L$ = $r[sin^{-1}(\frac{x}{r})]$ $|_{{\,0}}^{{\,\frac{r}{\sqrt 2}}}$ $L$ = $r[sin^{-1}(\frac{1}{\sqrt 2})-sin^{-1}(0)]$ $L$ = $r(\frac{\pi}{4}-0)$ $L$ = $\frac{\pi{r}}{4}$ $circumference$ = $8L$ = $8(\frac{\pi{r}}{4})$ = $2\pi{r}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.