Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 423: 124

Answer

$a)$ $\frac{\pi^{2}}{2}$ $b)$ $\pi$

Work Step by Step

$a)$ $A(x)$ = $\frac{\pi}{4}(diameter)^{2}$ $A(x)$ = $\frac{\pi}{4}(\frac{2}{\sqrt[4] {1-x^{2}}}-0)^{2}$ $A(x)$ = $\frac{\pi}{\sqrt{1-x^{2}}}$ $V$ = $\int_{{\,-\frac{\sqrt 2}{2}}}^{{\,\frac{\sqrt 2}{2}}}$$\frac{\pi}{\sqrt{1-x^{2}}}$$dx$ $V$ = $\pi[sin^{-1}(x)]$ $|_{{\,-\frac{\sqrt 2}{2}}}^{{\,\frac{\sqrt 2}{2}}}$ $V$ = $\pi[sin^{-1}(\frac{\sqrt 2}{2})-sin^{-1}(-\frac{\sqrt 2}{2})]$ $V$ = $\pi(\frac{\pi}{4}-(\frac{-\pi}{4}))$ $V$ = $\pi(\frac{\pi}{4}+\frac{\pi}{4})$ $V$ = $\frac{\pi^{2}}{2}$ $b)$ $A(x)$ = $\frac{(diagonals)^{2}}{2}$ $A(x)$ = $\frac{1}{2}(\frac{2}{\sqrt[4] {1-x^{2}}}-0)^{2}$ $A(x)$ = $\frac{2}{\sqrt{1-x^{2}}}$ $V$ = $\int_{{\,-\frac{\sqrt 2}{2}}}^{{\,\frac{\sqrt 2}{2}}}$$\frac{2}{\sqrt{1-x^{2}}}$$dx$ $V$ = $2[sin^{-1}(x)]$ $|_{{\,-\frac{\sqrt 2}{2}}}^{{\,\frac{\sqrt 2}{2}}}$ $V$ = $2[sin^{-1}(\frac{\sqrt 2}{2})-sin^{-1}(-\frac{\sqrt 2}{2})]$ $V$ = $2(\frac{\pi}{4}-(\frac{-\pi}{4}))$ $V$ = $2(\frac{\pi}{4}+\frac{\pi}{4})$ $V$ = $\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.