Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 180: 112

Answer

$4$ unit/sec

Work Step by Step

Step 1. Identify the given conditions: $y=x^{3/2}, s'=\frac{ds}{dt}=11u/sec, x=3$ Step 2. Calculate the distances: $y=(3)^{3/2}=3\sqrt 3, s=\sqrt {3^2+27}=6$, the point is $(3,3\sqrt 3)$ Step 3. Take derivative: $y=x^{3/2}$, $y'=\frac{3}{2}x^{1/2}x'=\frac{3}{2}\sqrt 3x'=$ Step 4. Take derivatives: $s^2=x^2+y^2$, $2ss'=2xx'+2yy'$ or $ss'=xx'+yy'$ Step 5. Plug-in the known numbers: $6(11)=3x'+3\sqrt 3(\frac{3}{2}\sqrt 3)x=3x'+27x'/2=33x'/2$ Thus $\frac{dx}{dt}=x'=4$ unit/sec
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.