Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 181: 113

Answer

a. $h=\frac{5r}{2}$ or $r=\frac{2h}{5}$ b. $-\frac{125}{144\pi}\approx-0.276ft/min$

Work Step by Step

a. Using the figure provided by the Exercise, we have $\frac{h}{10}=\frac{r}{4}$ (using similar triangles); thus, $h=\frac{5r}{2}$ or $r=\frac{2h}{5}$ b. With $V=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi (\frac{2h}{5})^2h=(\frac{4\pi}{75})h^3$, we have $\frac{dV}{dt}=(\frac{4\pi}{25})h^2\frac{dh}{dt}$ Given $\frac{dV}{dt}=-5ft^3/min$ and $h=6ft$, we have $-5=(\frac{4\pi}{25})6^2\frac{dh}{dt}$ which gives $\frac{dh}{dt}=-\frac{125}{144\pi}\approx-0.276ft/min$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.