Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 180: 105

Answer

a. $\frac{dS}{dt}=(4\pi r+2\pi h)\frac{dr}{dt}$ b. $\frac{dS}{dt}=2\pi r\frac{dh}{dt}$ c. $\frac{dS}{dt}=(4\pi r+2\pi h)\frac{dr}{dt} +2\pi r\frac{dh}{dt} $ d. $\frac{dr}{dt}=-\frac{r}{2r+h} \frac{dh}{dt} $

Work Step by Step

a. Given $S=2\pi r^2+2\pi rh$, we have $\frac{dS}{dt}=(4\pi r+2\pi h)\frac{dr}{dt}$ where $h$ is constant. b. $\frac{dS}{dt}=2\pi r\frac{dh}{dt}$ where $r$ is constant. c. $\frac{dS}{dt}=(4\pi r+2\pi h)\frac{dr}{dt} +2\pi r\frac{dh}{dt} $ d. $4\pi r\frac{dr}{dt}+2\pi h\frac{dr}{dt}+2\pi r \frac{dh}{dt} =0$ which gives $(2 r+ h)\frac{dr}{dt}+ r \frac{dh}{dt} =0$ and $\frac{dr}{dt}=-\frac{r}{2r+h} \frac{dh}{dt} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.