Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 180: 106

Answer

a. $\frac{dS}{dt}=\frac{2\pi r^2+\pi h^2}{\sqrt {r^2+h^2}}\frac{dr}{dt}$ b. $\frac{dS}{dt}=\frac{\pi rh}{\sqrt {r^2+h^2}}\frac{dh}{dt}$ c.$\frac{dS}{dt}=\frac{2\pi r^2+\pi h^2}{\sqrt {r^2+h^2}}\frac{dr}{dt}+\frac{\pi rh}{\sqrt {r^2+h^2}}\frac{dh}{dt}$

Work Step by Step

a. Given $S=\pi r\sqrt {r^2+h^2}$, we have $\frac{dS}{dt}=(\pi \sqrt {r^2+h^2}+\frac{\pi r(2r)}{2\sqrt {r^2+h^2}})\frac{dr}{dt}=(\frac{\pi(r^2+h^2)+\pi r^2}{\sqrt {r^2+h^2}})\frac{dr}{dt}=\frac{2\pi r^2+\pi h^2}{\sqrt {r^2+h^2}}\frac{dr}{dt}$ where $h$ is constant. b. $\frac{dS}{dt}=(\frac{\pi r(2h)}{2\sqrt {r^2+h^2}})\frac{dh}{dt}=\frac{\pi rh}{\sqrt {r^2+h^2}}\frac{dh}{dt}$ where $r$ is constant. c. Combine the results above, $\frac{dS}{dt}=\frac{2\pi r^2+\pi h^2}{\sqrt {r^2+h^2}}\frac{dr}{dt}+\frac{\pi rh}{\sqrt {r^2+h^2}}\frac{dh}{dt}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.