Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 180: 111

Answer

$2$ m/sec.

Work Step by Step

Step 1. Identify the given conditions: $x'=\frac{dx}{dt}=10m/sec, y'=\frac{dy}{dt}=5m/sec$, point $(3,-4)$ Step 2. Calculate the distance of the point to the origin: $s=\sqrt {x^2+y^2}=\sqrt {3^2+(-4)^2}=5$ Step 3. Take derivatives: $s^2=x^2+y^2$, $2ss'=2xx'+2yy'$, thus $\frac{ds}{dt}=s'=\frac{xx'+yy'}{s}=\frac{3(10)+(-4)(5)}{5}=\frac{10}{5}=2$ m/sec (positive means moving away from the origin)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.