Answer
$\lt \dfrac{1}{5},\dfrac{14}{5}\gt$ and $\dfrac{\sqrt{197}}{5}$
Work Step by Step
The magnitude of a vector is:$|n|=\sqrt{n_1^2+n_2^2}$
Here, $u=\lt 3,-2 \gt; v= \lt -2,5 \gt$
Now, $\dfrac{3}{5}u +\dfrac{4}{5}v=\dfrac{3}{5}\lt 3,-2 \gt +\dfrac{4}{5} \lt -2,5 \gt$
or, $ =\lt \dfrac{1}{5},\dfrac{14}{5} \gt$
and $|\lt \dfrac{1}{5},\dfrac{14}{5}\gt|=\sqrt{(\dfrac{1}{5})^2+(\dfrac{14}{5})^2}=\sqrt{\dfrac{1}{25}+\dfrac{196}{25}}=\dfrac{\sqrt{197}}{5}$