Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Section 12.2 - Vectors - Exercises 12.2 - Page 704: 14

Answer

$\lt \dfrac{-1}{\sqrt 2},\dfrac{-1}{\sqrt 2} \gt$

Work Step by Step

Since, we have $v=\lt |v| \cos \theta, |v| \sin \theta \gt$ to compute the components of a vector $v$ Given: $|v|=1$ and $\theta=\dfrac{-3\pi}{4}$ Thus, $v=\lt 1 \cos (\dfrac{-3\pi}{4}), 1 \cos (\dfrac{-3\pi}{4}) \gt$ or, $v=\lt \dfrac{-1}{\sqrt 2},\dfrac{-1}{\sqrt 2} \gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.