Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Section 12.2 - Vectors - Exercises 12.2 - Page 704: 29

Answer

$\dfrac{1}{\sqrt 2}(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$

Work Step by Step

Formula to find the unit vector $\hat{\textbf{v}}$ is: $\hat{\textbf{v}}=\dfrac{v}{|v|}$ Given: $v=\dfrac{1}{\sqrt6}i-\dfrac{1}{\sqrt6}j-\dfrac{1}{\sqrt6}k$; $|v|=\sqrt{(\dfrac{1}{\sqrt6})^2+(\dfrac{-1}{\sqrt6})^2+(\dfrac{-1}{\sqrt6})^2}=\dfrac{1}{\sqrt 2}$ Thus, $\hat{\textbf{v}}=\dfrac{(\dfrac{1}{\sqrt6}i-\dfrac{1}{\sqrt6}j-\dfrac{1}{\sqrt6}k)}{(\dfrac{1}{\sqrt 2})}=(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$ and $v=|v|\hat{\textbf{v}}=\dfrac{1}{\sqrt 2}(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.