Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 60

Answer

$$ x= t^{2}-t^{3}, \quad y= t+t^{4} , \quad 0 \leq t \leq 1 $$ The surface area of the curve, which is obtained by rotating the given curve about the x-axis, is $$ S=\int 2 \pi y d s=\int_{0}^{1} 2 \pi\left(t+t^{4}\right) \sqrt{16 t^{6}+9 t^{4}-4 t^{3}+4 t^{2}+1} d t \approx 12.7176 $$

Work Step by Step

$$ x= t^{2}-t^{3}, \quad y= t+t^{4} , \quad 0 \leq t \leq 1 $$ then $$ d x / d t=2 t-3 t^{2} , \quad d y / d t =1+4 t^{3} $$ so $$ \begin{aligned}\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} &=\left(2 t-3 t^{2}\right)^{2}+\left(1+4 t^{3}\right)^{2} \\ &=4 t^{2}-12 t^{3}+9 t^{4}+1+8 t^{3}+16 t^{6}, \end{aligned} $$ thus the surface area of the curve, which is obtained by rotating the given curve about the x-axis, is $$ S=\int 2 \pi y d s=\int_{0}^{1} 2 \pi\left(t+t^{4}\right) \sqrt{16 t^{6}+9 t^{4}-4 t^{3}+4 t^{2}+1} d t \approx 12.7176 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.