Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 43

Answer

$$ x=t \sin t, \quad y=t \cos t, \quad 0 \leq t \leq 1 $$ the exact length of the curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{1} \sqrt{t^{2}+1} d t \\ &=\frac{1}{2}[\sqrt{2}+\ln (1+\sqrt{2})] . \end{aligned} $$

Work Step by Step

$$ x=t \sin t, \quad y=t \cos t, \quad 0 \leq t \leq 1 $$ then $$ d x / d t=t \cos t+\sin t , \quad d y / d t=-t \sin t+\cos t, $$ so $$ (d x / d t)^{2}+(d y / d t)^{2} =t^{2} \cos ^{2} t+2 t \sin t \cos t+\sin ^{2} t+t^{2} \sin ^{2} t-2 t \sin t \cos t+\cos ^{2} t=t^{2}+1 $$ Thus the exact length of the curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{1} \sqrt{t^{2}+1} d t \\ & \quad \quad \quad \left[\text {Let } t=\tan \theta , \text {then } d t =\sec^{2} \theta d \theta \right]\\ &=\int_{0}^{\pi / 4} \sec \theta \sec ^{2} \theta d \theta \\ &=\int_{0}^{\pi / 4} \sec ^{3} \theta d \theta\\ &=\frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{0}^{\pi / 4} \\ & =\frac{1}{2}[\sqrt{2} \cdot 1+\ln (1+\sqrt{2})-0-\ln (1+0)] \\ &=\frac{1}{2}[\sqrt{2}+\ln (1+\sqrt{2})] . \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.