Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 39

Answer

$$ x=t-2 \sin t, \quad y=1-2 \cos t, \quad 0 \leq t \leq 4 \pi $$ the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{4 \pi} \sqrt{5-4 \cos t} d t \\ & \approx 26.7298 \end{aligned} $$

Work Step by Step

$$ x=t-2 \sin t, \quad y=1-2 \cos t, \quad 0 \leq t \leq 4 \pi $$ then $$ d x / d t=1-2 \cos t , \quad d y / d t=2 \sin t, $$ so $$ \begin{aligned} (d x / d t)^{2}+(d y / d t)^{2}& =(1-2 \cos t)^{2}+(2 \sin t)^{2} \\ &=1-4 \cos t+4 \cos ^{2} t+4 \sin ^{2} t \\ &=5-4 \cos t \end{aligned} $$ Thus the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{4 \pi} \sqrt{5-4 \cos t} d t \\ & \approx 26.7298 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.