Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 38

Answer

$$ x=t^{2}-t, y=t^{4}, \quad 1 \leq t \leq 4 $$ the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ & \approx 255.3756 \end{aligned} $$

Work Step by Step

$$ x=t^{2}-t, y=t^{4}, \quad 1 \leq t \leq 4 $$ then $$ d x / d t=2 t-1, \quad d y / d t=4 t^{3}, $$ so $$ \begin{aligned} (d x / d t)^{2}+(d y / d t)^{2}& =(2 t-1)^{2}+\left(4 t^{3}\right)^{2} \\ &=4 t^{2}-4 t+1+16 t^{6} . \end{aligned} $$ Thus the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{1}^{4} \sqrt{16 t^{6}+4 t^{2}-4 t+1} d t \\ & \approx 255.3756 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.