Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 37

Answer

$$ x=t+e^{-t}, y=t-e^{-t}, \quad 0 \leq t \leq 2 $$ $L \approx 3.1416$

Work Step by Step

$$ x=t+e^{-t}, y=t-e^{-t}, \quad 0 \leq t \leq 2 $$ then $$ d x / d t=1-e^{-t}, \quad d y / d t=1+e^{-t}, $$ so $$ \begin{aligned} (d x / d t)^{2}+(d y / d t)^{2}& =\left(1-e^{-t}\right)^{2}+\left(1+e^{-t}\right)^{2} \\ &=1-2 e^{-t}+e^{-2 t}+1+2 e^{-t}+e^{-2 t} \\ &=2+2 e^{-2 t}. \end{aligned} $$ Thus the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{2} \sqrt{2+2 e^{-2 t}} d t\\ & \approx 3.1416 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.