Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 41

Answer

Thus the exact length of the curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=2(2 \sqrt{2}-1). \end{aligned} $$

Work Step by Step

$$ x=1+3 t^{2}, \quad y=4+2 t^{3}, \quad 0 \leq t \leq 1 $$ then $$ d x / d t=6 t , \quad d y / d t=6 t^{2} $$ so $$ (d x / d t)^{2}+(d y / d t)^{2} =36 t^{2}+36 t^{4} $$ Thus the exact length of the curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{1} \sqrt{36 t^{2}+36 t^{4}} d t \\ &=\int_{0}^{1} 6 t \sqrt{1+t^{2}} d t \\ & \quad \quad \quad \left[\text {Let } u=1+t^{2}, \text {then }d u=2 t d t \right]\\ &=6 \int_{1}^{2} \sqrt{u}\left(\frac{1}{2} d u\right) \\ &=3\left[\frac{2}{3} \vec{u}^{3 / 2}\right]_{1}^{2} \\ & =2\left(2^{3 / 2}-1\right) \\ &=2(2 \sqrt{2}-1). \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.