Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 48

Answer

$$ x=3 t- t^{3}, \quad y=3 t^{2} $$ the length of the loop of the curve is $$ \begin{aligned} L &=\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=12 \sqrt{3} \end{aligned} $$

Work Step by Step

$$ x=3 t- t^{3}, \quad y=3 t^{2} $$ then $$ d x / d t=3 -3 t ^{2} , \quad d y / d t=6 t $$ so $$ \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} = (3 -3 t ^{2} )^{2}+ (6t)^{2} =(3+3t^{2})^{2 } $$ Thus the length of the loop of the curve is $$ \begin{aligned} L &=\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{-\sqrt{3}}^{\sqrt{3}}\left(3+3 t^{2}\right) d t \\ &=2 \int_{0}^{\sqrt{3}}\left(3+3 t^{2}\right) d t \\ &=2\left[3 t+t^{3}\right]_{0}^{\sqrt{3}} \\ &=2(3 \sqrt{3}+3 \sqrt{3}) \\ &=12 \sqrt{3} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.